Role of wall teichoic acids in Staphylococcus aureus endophthalmitis.
نویسندگان
چکیده
PURPOSE Wall teichoic acids (WTAs) are major polyanionic polymer components of the cell wall of Staphylococcus aureus. However, little is known about their role at the host-pathogen interface, especially in endophthalmitis. This study was designed to investigate the extent to which WTAs contribute to the pathogenicity of S. aureus in models of endophthalmitis and to determine whether there would be value in targeting their biosynthesis as a new therapeutic approach. METHODS S. aureus RN6390 and its isogenic WTA-null mutant (RN6390ΔtarO) were used to evaluate the role of WTAs in endophthalmitis. RN6390 and RN6390ΔtarO were cultured in bovine vitreous humor (VH) in vitro or inoculated into the vitreous chamber of C57B6 mice. Changes in the number of bacteria, organ function as determined by electroretinography (ERG), and histopathologic changes were assessed throughout the course of infection. In addition, the efficacy of WTA biosynthesis inhibitors in VH in vitro was examined. RESULTS It was observed that a component of VH synergized with WTA biosynthesis inhibitors in vitro and killed the S. aureus. This effect was also seen when mutants incapable of expressing WTA were exposed to VH. The killing activity of VH was lost on treatment with a protease inhibitor. RN6390ΔtarO could not survive in mouse eyes and did not affect organ function, nor was it able to establish endophthalmitis. CONCLUSIONS WTAs are essential cellular constituents for the manifestation of virulence by S. aureus in endophthalmitis, and appears to be a viable target for treating the endophthalmitis caused by S. aureus strains.
منابع مشابه
Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.
Wall teichoic acids are cell wall polymers that maintain the integrity of the cellular envelope and contribute to the virulence of Staphylococcus aureus. Despite the central role of wall teichoic acid in S. aureus virulence, details concerning the biosynthetic pathway of the predominant wall teichoic acid polymer are lacking, and workers have relied on a presumed similarity to the putative poly...
متن کاملTeichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus.
The cell wall of Staphylococcus aureus is characterized by an extremely high degree of cross-linking within its peptidoglycan (PGN). Penicillin-binding protein 4 (PBP4) is required for the synthesis of this highly cross-linked peptidoglycan. We found that wall teichoic acids, glycopolymers attached to the peptidoglycan and important for virulence in Gram-positive bacteria, act as temporal and s...
متن کاملSeparation of Teichoic Acid of Staphylococcus Aureus into Two Immunologically Distinct Specific Polysaccharides with Α- and Β-n-acetylglucosaminyl Linkages Respectively
Human sera were found to contain antibodies precipitating with each of two samples of teichoic acid of Staphylococcus aureus prior to immunization; these antibodies were probably formed as a result of contact or infection with this microorganism. Injection of teichoic acid into two individuals resulted in a rise in circulating antibody to teichoic acid; a third subject probably had a primary re...
متن کاملKey role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces.
Staphylococcus aureus is responsible for a large percentage of infections associated with implanted biomedical devices. The molecular basis of primary adhesion to artificial surfaces is not yet understood. Here, we demonstrate that teichoic acids, highly charged cell wall polymers, play a key role in the first step of biofilm formation. An S. aureus mutant bearing a stronger negative surface ch...
متن کاملWall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin.
Skin-colonizing gram-positive bacteria produce wall teichoic acids (WTAs) or related glycopolymers for unclear reasons. Using a WTA-deficient Staphylococcus aureus mutant, we demonstrated that WTA confers resistance to antimicrobial fatty acids from human sebaceous glands by preventing fatty acid binding. Thus, WTA is probably important for bacterial skin colonization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 52 6 شماره
صفحات -
تاریخ انتشار 2011